BIOSYNTHETIC ORIGIN OF THE CARBON SKELETON AND OXYGEN ATOMS OF THE LL-F28249 α^{\dagger} , A POTENT ANTIPARASITIC MACROLIDE

H.-R. TSOU^{††}, Z. H. AHMED, R. R. FIALA and M. W. BULLOCK

Agricultural Research Division, American Cyanamid Company, Princeton, New Jersey 08540, U.S.A.

G. T. CARTER, J. J. GOODMAN and D. B. BORDERS

Medical Research Division, Lederle Laboratories, American Cyanamid Company, Pearl River, New York 10965, U.S.A.

(Received for publication August 27, 1988)

The biosynthesis of LL-F28249 α in a culture of *Streptomyces cyaneogriseus* has been studied using ¹³C, ¹⁴C and ¹⁸O labeled precursors. A complete ¹³C NMR spectrum of F28249 α has been assigned. Incorporation studies using ¹³C labeled precursors indicate that the carbon skeleton of F28249 α is derived from seven acetate, six propionate and one 2-methylpropionate units. The origin of the oxygen atoms of F28249 α has been examined by feeding [1-¹³C, ¹⁶O₂]acetate, [1-¹³C, ¹⁶O₂]propionate, [2-¹³C]acetate/¹⁸O₂ and ¹⁶O₂ separately to the fermentation culture and analyzing the resulting labeled LL-F28249 α samples by ¹³C NMR, electron impact MS and chemical ionization MS. Out of a total of eight oxygen atoms in LL-F28249 α , four oxygen atoms are derived from acetate, three from propionate and one from molecular oxygen.

Streptomyces cyaneogriseus sp. noncyanogenus produces the LL-F28249 antibiotics, a new group of macrolides with potent antiparasitic activity^{1~5)}. The structures of the LL-F28249 antibiotics³⁾ are related to other 16-membered lactones, *i.e.*, milbemycins and avermeetins; however, significant

differences exist among them. In milbemycins⁶⁾, the C-23 is not hydroxylated and the C-25 side chain is a methyl, ethyl or isopropyl group. In avermectins⁷⁾, the C-13 bears a di-(L)-oleandrose moiety, C-25 has either an isopropyl or an isobutyl side chain and in some members, a double bond exists between C-22 and C-23.

In this paper^{+++,8)}, we wish to report the ¹³C NMR assignments and the bio-origin of the carbon and oxygen atoms of LL-28249 α (Fig. 1) as determined from ¹⁸C NMR and mass spectral data of the compounds obtained by feeding experiments using ¹³C and ¹⁸O labeled precursors.

[†] The name nemadectin has recently been approved for LL-F28249 α by the USAN council.

^{††} Present address is Medical Research Division, Lederle Laboratories, American Cyanamid Company, Pearl River, New York 10965, U.S.A.

^{†††} A preliminary account of this work was previously presented ref 8.

399

Experimental

Organism

Streptomyces cyaneogriseus sp. noncyanogenus strains NRRL 15773, improved strains NS2(8), F28249-PF2 to 6 were used for this work.

Culture Conditions

The ingredients of the seed culture medium used for the incorporation of sodium $[1-{}^{13}C]$ acetate, sodium $[1-{}^{13}C]$ propionate and sodium $[1-{}^{13}C]$ -2-methylpropionate with early strains were (in g/liter); dextrin (20), glucose (10), yeast extract (5), NZ-Amine A (5) and CaCO₃ (1). Culture F28249-NS2(8) was grown in two stages of inoculum in 500-ml Erlenmeyer flasks containing 100 ml of the seed culture medium.

For the incorporation experiments using sodium $[1^{-13}C, {}^{18}O_2]$ acctate, sodium $[1^{-13}C, {}^{18}O_2]$ propionate and $[2^{-13}C]$ acctate, $[2^{-13}C]$ acctate/ ${}^{18}O_2$ and ${}^{18}O_2$ with improved strains, the following seed culture medium was used (in g/liter); glucose (20), Na₂SO₄ (0.5), MgSO₄·7H₂O (0.1), KH₂PO₄ (1), K₂HPO₄ (1), FeSO₄·7H₂O (0.05) and corn steep liquor (15) adjusted to pH 6.5. The seed culture medium (25 ml) in a 250-ml Erlenmeyer flask was inoculated with 0.4 ml of a thawed suspension of the culture and propagated on a shaker bath (120 rpm) at 27.5°C for 2 days.

One ml of the inoculum was used to inoculate the fermentation medium (100 ml/500 ml flask, 25 ml/250 ml baffled flask or 15 ml/250 ml baffled flask). Three types of fermentation media were used with the following compositions (g/liter): Medium A; molasses (20), lactose (10), Proflo (5) and CaCO₃ (1), medium B; glucose (60), pressed peanut meal (20), Proflo (10) and CaCO₃ (4), medium C; glucose (50), Proflo (25) and CaCO₃ (7.5). All the fermentations were carried out on a rotary shaker (235 rpm) at 27°C for 7 days unless stated otherwise.

Isotope-labeled Substrates

Sodium [1-¹³C]acetate, sodium [2-¹³C]acetate, sodium [1-¹³C]propionate and sodium [1-¹³C]-2methylpropionate of 99.5 atom % ¹³C, were purchased from Merck Sharp and Dohme Isotopes (St. Louis, MO); sodium [1-¹⁴C]acetate (specific radioactivity 56.0 mCi/mmol), sodium [2-¹⁴C]acetate (51.0 mCi/mmol), sodium [1-¹⁴C]propionate (56.6 mCi/mmol) and sodium [1-¹⁴C]-2-methylpropionate were purchased from New England Nuclear (Boston, MA). Sodium [1-¹³C,¹⁸O₂]acetate and sodium [1-¹³C,¹⁸O₂]propionate were prepared in our laboratory⁹⁾ with isotopic composition of 64.2% ¹³C¹⁸O₂, 28.4% ¹³C¹³O¹⁶O, 7.3% ¹³C¹⁶O₂ and 64.4% ¹³C¹⁸O₂, 27.2% ¹³C¹⁸O¹⁶O and 8.3% ¹³C¹⁶O₂, respectively. A cylinder of ¹⁸O, gas (95 atom% ¹⁸O) was purchased from Isotec Incorporated (Centerville, OH).

Isolation of LL-F28249 α

The whole fermentation mash (425 ml) was stirred with diatomaceous earth (24 g), and filtered. The filter cake was washed with water and then extracted with MeOH. The MeOH extract was concentrated *in vacuo* to remove most of the MeOH. The antibiotic was extracted from the aqueous MeOH solution with CH_2Cl_2 . The extract was dried over MgSO₄, filtered and evaporated to give 0.88 g of a gummy residue.

The residue along with a trace amount of indophenol dye in CH_2Cl_2 was applied to a 100-ml silica gel (Woelm TSC Activity III) column which had been slurry-packed in CH_2Cl_2 . The column was eluted with CH_2Cl_2 - EtOAc (90:10) until the γ component³⁾, which eluted soon after the dye marker, was off the column and then with CH_2Cl_2 - EtOAc (80:20) which eluted the major α component.

The γ and α components were further purified by chromatography on a C18 reverse phase column (21.4 mm × 30 cm, Rainin Dynamax). The fractions were eluted with MeOH - H₂O gradient from 85:15 to 90:10 over 30 minutes followed by 100% MeOH for 8 minutes at a flow rate of 13.2 ml/ minute. The γ and α components were eluted at 2.7 and 3.3 column volumes, respectively.

The fractions containing the desired product were combined and evaporated. The residue was dissolved in *tert*-butanol and lyophilized to yield 227.5 mg of LL-F28249 α and 41.9 mg of LL-F28249 γ and the ¹³C and ¹⁸O abundance were determined by ¹³C NMR spectroscopy.

Results and Discussion

Aeration had a dramatic effect on the fermentation yield of LL-F28249 α . We observed that the production yield of LL-F28249 α decreased considerably with increasing volume of the fermentation medium as shown in Table 1. To circumvent this problem, baffled flasks were used to allow sufficient aeration.

The bio-origin of LL-F28249 α was established using ¹³C and ¹⁸O labeled substrates for incorporation into LL-F28249 α . The results of the runs are summarized in Table 2. All the labeled precursors gave reasonably high ¹³C enrichment in LL-F28249 α . In particular, a 13-fold ¹³C enrichment in LL-28249 α was obtained by the incorporation of sodium [1-¹³C]-2-methylpropionate.

The fermentation yields varied considerably in the labeling studies due to the potency of the culture, the amount of aeration and the choice of the fermentation medium. The detailed ¹³C enrichment data and the complete ¹³C assignments of LL-F28249 α are listed in Table 3.

¹³C NMR assignments are based on general chemical considerations and careful comparison with structurally-related macrolides, *i.e.*, milbemycins¹⁰⁾ and avermectins⁷⁾ and other work recently reported by us⁴⁾. Most of the 36 ¹³C signals were unambiguously assigned except 3 pairs of ¹³C resonances. Among them, the two pairs of signals due to C-17, C-19, C-20 and C-22 were assigned by comparing with the corresponding signals of avermectin $B_2^{(6)}$. The remaining pair of signals due to C-9 and C-15

Table 1.	The effect	of aeration	on on t	the ferm	entation
yield of	f LL-F2824	9α.			

Fermentation flask (250 ml)	Production yield ⁴ of LL-F28249 α (mg/liter) in fermentation medium of			
-	15 ml	25 ml	50 ml	
Regular flask	300	5	0	
Baffled flask	300	310	_	

^a The fermentation was carried out using seed culture F28249-PF3-2 in fermentation medium B and harvested at day 7.

Precursor	Addition amount (g/liter)	Addition time (hours)	LL-F28249α (mg/liter) at day 7	¹⁴ C incor- poration ^a (%)	¹³ C incor- poration ^b (%)
[1-13C]Acetate ^c	0.5, 0.5	48, 72	40ª		4.3
[1-13C]Propionate°	0.5, 0.5	48, 72	30 ^d		2.8
[1-13C]-2-Methylpropionate ^e	0.25, 0.25	48, 72	19 ^d		13.0
[2-13C]Acetate ^e	1, 1	96, 120	286	2.63	3.0
[2-13C]Acetate and ¹⁸ O ₂ ^e	1, 1	96, 120, 96∼168	300	3.14	3.3
[1- ¹³ C, ¹⁸ O ₂]Acetate ^e	1, 1	96, 120	425	1.15	3.4
[1-1 ³ C, ¹⁸ O ₂]Propionate ^e	0.67, 0.67, 0.67	72, 96, 120	228	1.77	3.0

Table 2. Summary of ¹⁸C and ¹⁸O incorporation studies.

^a For each ¹³C incorporation study, $5 \sim 10 \ \mu$ C i of ¹⁴C labeled precursor was mixed with the corresponding ¹³C labeled precursor and added aseptically to each fermentation flask.

^b The ratio of ¹³C enrichment to ¹³C natural abundance.

 Culture F28249-NS2(8) was used. Fermentations were carried out in 500-ml Erlenmeyer flasks containing 100 ml of fermentation medium A.

^d Fermentation yields at 6 days.

An improved culture F28249-PF3-6 was developed and used in these experiments. Fermentations were carried out in 250-ml baffled flasks containing 25 ml of fermentation medium C. Only 15 ml of fermentation medium C was used in the incorporation of [2-¹³C]acetate and ¹⁸O₂.

-: No ¹⁴C labeled precursors were used.

401

13C at its	Carbon	Relative abundance [°] of ¹³ C in LL-F28249 α produced from				
(ppm) ^b	No.	[1- ¹³ C, ¹⁸ O ₂]- Acetate	[2- ¹³ C]- Acetate	[1- ¹³ C, ¹⁸ O ₂]- Propionate	[1-13C]-2-Methyl- propionated	
173.33	1	3.8*	0.8	1.5	0.8	
142.21	11	1.9**	1.3	3.2*	1.4	
140.35	8	1.2	1.7**	1.2		
138.64	4	1.8	2.2**	1.1		
137.05	27	1.0	0.9	1.0	13.0*	
136.92	14	1.4	1.6**	1.6	0.9	
131.74	26	1.1	1.9**	1.5		
123.87	10	1.0	2.4*	1.0		
120.99	15	3.0*	0.8	1.0	1.6	
120.56	9	3.2*	0.8	1.0	1.4	
118.06	3	1.8**	1.3	2.9*	1.0	
100.15	21	2.5*	0.7	1.7.	1.0	
80.60	7	2.2**	0.9	4.3*	0.8	
80.06	6	1.1	2.9*	1.0		
77.33	25	1.7**	1.3	3.5*	1.3	
69.15	23	1.7**	1.4	3.6*	1.2	
68.98	17	3.5*	1.0	1.1	1.2	
68.28	$8-CH_2$	0.9	2.1***	0.9	—	
67.93	5	4.0*	0.9	1.0	1.5	
67.67	19	3.1*	0.9	1.1	1.9	
48.54	13	2.1**	1.5	2.6*	0.9	
46.35	2	1.0	2.4*	1.0		
41.59	22	1.0	3.5*	0.8		
41.51	20	0.8	3.8*	0.8		
36.65	24	1.0	2.4**	0.8		
36.40	18	0.8	4.9*	0.8	0.7	
36.04	12	0.9	2.1**	0.9	0.8	
35.12	16	0.9	3.4*	0.8	_	
27.12	28	1,1	0.8	1.0		
23.04	29	0.8	1.0	0.8	<u> </u>	
22.98	$28-CH_3$	0.8	1.0	0.7		
22.57	12-CH₃	0.9	2.3***	0.8	—	
19.97	$4-CH_3$	1.0	2.2***	0.9	—	
15.37	14-CH ₃	0.9	2.4***	0.9	_	
14.46	24-CH ₃	0.9	2.6***	0.8		
11.17	$26-CH_3$	0.8	2.4***	0.8		

Table 3. Incorporation of sodium [1-¹³C,¹⁸O₂]acetate, sodium [2-¹³C]acetate, sodium [1-¹³C,¹⁸O₂]propionate and sodium [1-13C]-2-methylpropionate into LL-F28249α as determined by ¹³C NMR^a.

The concentration of natural abundance and ¹³C enriched LL-F28249 α was 86 mM in C₆D₆. The broad a band proton decoupled ¹³C NMR Fourier transform spectra were recorded on a Varian XL-300 NMR spectrometer at 75.47 MHz using an internal deuterium lock of C₈D₈ at 24.6°C.

^b Downfield from (CH₃)₄Si.

^o Peak height ratio of ¹³C enriched to natural abundance LL-F28249 α .

^d The ¹³C NMR spectrum was recorded using CDCl₃ as the solvent.

* Denotes primary ¹³C enrichment.

** Denotes secondary ¹³C enrichment from [2-¹³C]propionate.

*** Denotes secondary ¹³C enrichment from [3-¹³C]propionate.

were assigned by analogy with the milberrycins α_2 , α_4 and D¹⁰. The ¹³C NMR assignments of LL-F28249 α have been independently determined by our colleague S. RAJAN using the "INADEQUATE" experiment, which will be published separately.

Fig. 2. Origin of the carbon atoms of LL-F28249 α .

The experiments using ¹³C labeled acetates showed that carbons 1, 5, 9, 15, 17, 19 and 21 were derived from C-1 of acetate and that carbons 2, 6, 10, 16, 18, 20 and 22 were derived from C-2 of acetate. These results indicate that seven acetate units were incorporated into LL-F28249 α . In the sample derived from the experiment using [1-¹³C]propionate, ¹³C enrichment at carbons 3, 7, 11, 13, 23 and 25 were observed, indicating that six propionate units were incorporated into LL-F28249 α . The experiment using [1-¹³C]-2-methylpropionate showed that only carbon 27 was derived from C-1 of 2-methylpropionate. The results described above suggest that the carbon skeleton of LL-F28249 α is derived from seven acetate, six propionate and one 2-methylpropionate units (Fig. 2). Excluding the side chain portion, this labeling pattern is identical to that determined for milbemycin¹⁰ and avermectin¹¹.

It is noteworthy that incorporation of $[1^{-13}C]$ acetate led to secondary enrichment of carbons derived from $[1^{-13}C]$ propionate, and incorporation of $[2^{-13}C]$ acetate led to secondary enrichment of carbons derived from $[2^{-13}C]$ propionate and $[3^{-13}C]$ propionate. Such secondary enrichments were also shown in the biosynthesis of maduramicin⁹, milbemycin¹⁰, rifamycin¹², leucomycin¹³, tylosin¹⁴, lysocellin¹⁵ and oligomycin A¹⁶. Presumably acetate is converted to propionate during the Kreb's cycle⁹. On the other hand, the incorporation experiment using $[1^{-13}C]$ propionate did not result in the enrichment of carbons originating from $[1^{-13}C]$ acetate.

With the fundamental precursors of the carbon skeleton firmly established, we directed our effort to the determination of the origin of the oxygen atoms of LL-F28249 α . Sodium [1-¹³C,¹⁸O₂]acetate (1 g/liter) was added at 96 hours and at 120 hours to each fermentation flask. After an additional 48 hours at 27°C (235 rpm), the resulting doubly labeled LL-F28249 α was isolated and analyzed by 75.47 MHz ¹³C NMR (Fig. 3). The signals for C-5, C-17 and C-19 each appeared as an enhanced pair of resonances corresponding to the respective ¹³C¹⁶O and ¹³C¹⁸O species (Table 4). The signal corresponding to C-1 was too broad to observe the expected pair of signals. Therefore (O)-2, (O)-3, (O)-6 and perhaps (O)-1 are ¹⁸O enriched and derived from acetate (Fig. 4). Similarly, sodium [1-¹³C,¹⁸O₂]propionate (0.67 g/liter) was administered at 72, 96 and 120 hours, respectively to each fermentation flask. After an additional 48 hours at 27°C (235 rpm), LL-F28249 α was isolated and analyzed by ¹³C NMR. The ¹³C NMR revealed the presence of excess ¹⁸O at C-7, C-23 and C-25, as evidenced by the enhanced pair of signals (Fig. 3). The presence of ¹⁸O label at (O)-4 suggests that the

Fig. 3. Section of the 75.47 MHz broad band proton-decoupled 13 C NMR spectrum of 13 C and 18 O labeled LL-F28249 α .

C-5, C-17 and C-19 signals are from LL-F28249 α derived from [1-¹³C,¹⁸O₂]acetate. C-7, C-23 and C-25 signals are from LL-F28249 α derived from [1-¹³C,¹⁸O₂]propionate. C-6 and 8-CH₂ signals are from LL-F28249 α derived from [2-¹³C]acetate and ¹⁸O₂ gas.

Table 4. Incorporation of [1-¹³C,¹⁶O₂]acetate, [1-¹³C,¹⁶O₂]propionate and [2-¹³C]acetate-¹⁶O₂ gas into LL-F28249α.

Precursor	Carbon No.	¹³ C shift (ppm)	<u></u> Δδ (ppm)	¹⁸ O: ¹⁶ O
[1- ¹³ C, ¹⁸ O ₂]Acetate	1	173.33ª	_	
	21	100.15	0	0:100
	17	68.98	0.027	51:49
	5	67.93	0.027	51:49
	19	67.67	0.046	48:52
[1-13C, 18O,]Propionate	7	80.60	0.022	40:60
	25	77.33	0.028	46:54
	23	69.15	0.033	47:53
[2-13C]Acetate and 18O ₂ gas	6	80.06	0.033	
	$8-CH_2$	68.28	0.021	—

^a The peak was too broad to observe the expected doublet.

formation of the cyclohexene ring may arise through aldol condensation rather than electrophilic cyclization of polyolefinic intermediates. Only a singlet peak corresponding to the spiroketal carbon C-21 was observed in the doubly labeled samples incorporated by either sodium $[1-{}^{18}C, {}^{18}O_2]$ actate or sodium $[1-{}^{18}C, {}^{18}O_2]$ propionate. This suggests that the hydroxyl groups (O)-6 and (O)-7 from C-17 and C-25 react with keto group of C-21 to generate the spiroketal. This biosynthetic pathway is supported by the work of CANE *et al.*¹¹ on avermectin.

The bio-origin of all the oxygen atoms was definitively established except for (O)-1 which was ambiguous and (O)-5, which we speculated was derived from molecular oxygen. To test this hy-

 $C_{36}H_{46}O_4^{18}O m/z 561 (M+1-3H_2O)$

pothesis, sodium [2-¹³C]acetate (1 g/liter) was added to a specially-designed fermentation flask¹⁷⁾ at 96 hours and again at 120 hours. Furthermore, ¹⁸O₂ was administered to the same fermentation flask from 96 to 168 hours. At the end of 168 hours, the ¹³C NMR analysis of the doubly labeled LL-F28249 α indicated the presence of excess ¹⁸O at (O)-5 as evidenced by the enhanced pair of signals at C-6 and a pair of signals at the 8-methylene carbon.

The bio-origin of (O)-5 was independently supported by mass spectrometry of LL-F28249 α produced in the presence of ${}^{18}O_2$. The chemical ionization mass spectrum of the ${}^{18}O$ labeled sample

Fig. 6. EI-MS fragmentation of LL-F28249 α .

showed that 84% of the molecule contained one ¹⁸O and that 15% had none. Signals were observed at m/z 615, 597, 579 and 561 corresponding to $(M+H)^+$, $(M+H-H_2O)^+$, $(M+H-2H_2O)^+$ and $(M+H-3H_2O)^+$ ions (Fig. 5). Corresponding positive ions were also observed for the unlabeled LL-F28249 α . Presumably these losses of water involve the hydroxyl groups and therefore these data suggests that none of the hydroxyl groups are derived from molecular oxygen. The electron impact (EI) ionization fragmentation pattern gave intense ions at m/z 153, 316, 427, 450 and 468 (Fig. 6). Each of these ions had one heavy oxygen atom. Less intense signals seen at m/z 219, 237, 247 and 265 have one to three oxygen atoms but no ¹⁸O label. An inspection of the structures shows that only fragments containing the furan ring have the labeled oxygen atom. The simple 3-hydroxy-5,6-dihydrofuran fragment m/z 153 has only two oxygen atoms and since the hydroxyl oxygen was lost as $H_2^{16}O$ from the chemical ionization (CI)-MS spectrum, the labeled oxygen atom must be the oxygen in the furan ring connecting carbon 6 and 8-methylene carbon. Furthermore, the absence of other ¹⁸O labeled fragments indicates that the (O)-1 is not derived from oxygen gas and therefore must be brought in with the acetate molecule.

Acknowledgment

We are indebted to Mr. A. DACUNHA for the measurements of the mass spectra. We wish to thank Mr. J. D. KORSHALLA for providing us with the cultures.

References

- GREENSTEIN, M.; L. JOHNSON, M. LECHEVALIER, H. LECHEVALIER & W. M. MAIESE: LL-F28249 antibiotic complex: A new family of antiparasitic macrocyclic lactones. I. Taxonomy and bioactivity. Program and Abstracts of the 27th Intersci. Conf. on Antimicrob. Agents Chemother., No. 996, p. 270, New York, Oct. 4~7, 1987
- 2) GOODMAN, J. J.; M. J. TORREY, J. D. KORSHALLA, F. PINHO & R. T. TESTA: LL-F28249 antibiotic complex: A new family of antiparasitic macrocyclic lactones. II. Fermentation. Program and Abstracts of the 27th Intersci. Conf. on Antimicrob. Agents Chemother., No. 997, p. 271, New York, Oct. 4~7, 1987
- 3) CARTER, G. T.; J. A. NIETSCHE & D. B. BORDERS: Structure determination of LL-F28249 α , β , \hat{r} , and λ , potent antiparasitic macrolides from *Streptomyces cyaneogriseus* ssp. *noncyanogenus*. J. Chem. Soc. Chem. Commun. 1987: 402~404, 1987
- 4) CARTER, G. T.; J. A. NIETSCHE, M. R. HERTZ, D. R. WILLIAMS, M. M. SIEGEL, G. O. MORTON, J. C. JAMES & D. B. BORDERS: LL-F28249 antibiotic complex: A new family of antiparasitic macrocyclic lactones. Isolation, characterization and structures of LL-F28249 α, β, γ, λ. J. Antibiotics 41: 519~529, 1988
- 5) WOOD, I. B.; J. A. PANKAVICH & M. E. DOSCHER: LL-F28249 antibiotic complex. A new family of antiparasitic macrocyclic lactones. V. Spectrum of antiparasitic activity. Program and Abstracts of the 27th Intersci. Conf. on Antimicrob. Agents Chemother., No. 1000, p. 271, New York, Oct. 4~7, 1987

- 6) TAKIGUCHI, Y.; H. MISHIMA, M. OKUDA, M. TERAO, A. AOKI & R. FUKUDA: Milbemycins, a new family of macrolide antibiotics. Fermentation, isolation and physico-chemical properties. J. Antibiotics 33: 1120~1127, 1980
- 7) ALBERS-SCHÖNBERG, G.; B. H. ARISON, J. C. CHABALA, A. W. DOUGLAS, P. ESKOLA, M. H. FISHER, A. LUSI, H. MROZIK, J. L. SMITH & R. L. TOLMAN: Avermeetins. Structure determination. J. Am. Chem. Soc. 103: 4216~4221, 1981
- 8) TSOU, H.-R.; Z. H. AHMED, R. FIALA, M. W. BULLOCK, G. T. CARTER, J. J. GOODMAN & D. B. BORDERS: LL-F28249 antibiotic complex. A new family of antiparasitic macrocyclic lactones. IV. Origin of the carbon and oxygen atoms of LL-F28249α. Program and Abstracts of the 27th Intersci. Conf. on Antimicrob. Agents and Chemother., No. 999, p. 271, New York, Oct. 4~7, 1987
- 9) TSOU, H.-R.; S. RAJAN, R. FIALA, P. C. MOWERY, M. W. BULLOCK, D. B. BORDERS, J. C. JAMES, J. H. MARTIN & G. O. MORTON: Biosynthesis of the antibiotic maduramicin. Origin of the carbon and oxygen atoms as well as the ¹³C NMR assignments. J. Antibiotics 37: 1651~1663, 1984
- 10) ONO, M.; H. MISHIMA, Y. TAKIGUCHI, M. TERAO, H. KOBAYASHI, S. IWASAKI & S. OKUDA: Milberrycins, a new family of macrolide antibiotics. Studies on the biosynthesis of milberrycins α₂, α₄ and D using ¹³C labeled precursors. J. Antibiotics 36: 991 ~ 1000, 1983
- CANE, D. E.; T.-C. LIANG, L. KAPLAN, M. K. NALLIN, M. D. SCHULMAN, O. D. HENSENS, A. W. DOUGLAS & G. ALBERS-SCHÖNBERG: Biosynthetic origin of the carbon skeleton and oxygen atoms of the avermectins. J. Am. Chem. Soc. 105: 4110~4112, 1983
- 12) WHITE, R. J.; E. MARTINELLI, G. G. GALLO, G. LANCINI & P. BEYNON: Rifamycin biosynthesis studied with ¹³C enriched precursors and carbon magnetic resonance. Nature 243: 273~277, 1973
- 13) OMURA, S.; A. NAKAGAWA, H. TAKESHIMA, K. ATSUMI, J. MIYAZAWA, F. PIRIOU & G. LUKACS: Biosynthetic studies using ¹³C enriched precursors on the 16-membered macrolide antibiotics leucomycin A₃. J. Am. Chem. Soc. 97: 6600~6602, 1975
- 14) OMURA, S.; H. TAKESHIMA, A. NAKAGAWA, N. KANEMOTO & G. LUKACS: Studies on carboxylic acid metabolism in a macrolide-producing microorganism using carbon-13 magnetic resonance. Bioorg. Chem. 5: 451~454, 1976
- OTAKE, N.; H. SETO & M. KOENUMA: The assignment of the ¹³C NMR spectrum of lysocellin and its biosynthesis. Agric. Biol. Chem. 42: 1879~1886, 1978
- 16) BU'LOCK, J. D.; G. A. MORRIS & M. K. RICHARDS: Biosynthetic origins of the large macrolide, oligomycin A. Tetrahedron Lett. 27: 2917~2920, 1986
- 17) TSOU, H.-R.; S. RAJAN, T. T. CHANG, R. R. FIALA, G. W. STOCKTON & M. W. BULLOCK: The utilization of molecular oxygen during the biosynthesis of maduramicin. J. Antibiotics 40: 94~99, 1987